龙岩纺粘超纤无纺布——【厂家开工大吉】龙岩
聚酯玻纤布厂家-
以电化学交流阻抗谱和再碱化模拟试验研究了再碱化对碳化混凝土中具有氧化层钢筋的作用;采用扫描电镜(SEM)结合能谱分析(EDS)对再碱化后具有氧化层钢筋的表面进行了分析.结果表明:再碱化过程中,钢筋电极表面的电化学反应与钢筋表面的状态密切相关;当钢筋电极表面存在氧化物时,再碱化使该氧化物的价态逐渐降低,并在钢筋电极表面形成单质铁,导致钢筋表面不易形成致密钝化膜.以双K断裂理论为基础,基于标准钢筋混凝土三点弯曲梁断裂特性,推导了非标准钢筋混凝土三点弯曲梁断裂参数计算公式.开展了非标准钢筋混凝土三点弯曲梁试件断裂试验,研究了其断裂参数的变化规律.结果表明:试件荷载值随试件高度的增加而增大;而试件的亚临界扩展相对值、断裂韧度、起裂断裂韧度和失稳断裂韧度均不随试件高度的增加而变化,可认为是常数.通过18组试件的试验,对钢-聚醇(PVA)混杂纤维混凝土的流动性、抗压强度、破坏形式及钢纤维与PVA纤维的协同作用进行了研究.结果表明,混杂纤维总掺量(体积分数,下同)为1.75时,混凝土的流动性会随着PVA纤维掺量的提高而降低,且在PVA纤维掺量大于0.25时下降加快;1.50钢纤维和0.25PVA纤维的纤维组合会发生正协同作用,使混凝土抗压强度达到;纤维组合为1.25钢纤维和0.50PVA纤维时混凝土抗折强度;PVA纤维的掺入有利于混凝土受压破坏的多缝开展.
自粘结沥青撒布后必须在沥青未失去流动性动性以前铺撞聚酯玻纤布,否则布体难以浸透沥青,降低聚酯玻纤布的防水性能。 铺装聚酯玻纤布的施工的环境温度必须在4℃以上。
为了取得的效果,在铺装聚酯玻纤布时还要注意以下几个方面:
聚酯玻纤布必须在热沥青上进行安装施工,们推荐以下的沥青:AC-20;PG64-22; AR8000;或者入等级为60-80的沥青;
福建聚酯玻纤布公司对极端高温的夏季施工,推荐采用粘度比较高的沥青,以下沥青比较适合夏季施工:AC-30;PG67-22;AR8000+;或者如等级为40-60的沥青。 沥青使用比例为1.1升/平方米,但是依据安装路面的实际情况和预计的迭合量,该使用比例会有一个范围:1.0-1.3升/平方米,们不推荐将运输车中的沥青加热到204℃以上,因为这样操作会妨碍液体沥青的预成熟。
在装卸聚酯玻纤布时一定要小心谨慎,如果布卷从运输车辆上掉落下来,会损伤聚酯玻纤布,从而造成应用问题。
如果安装中出现了条纹,任何在铺装方向上出现的大于2.5厘米的条纹都必须被割开关迭合起来,并且手工将迭合处浸渍在沥青层中。聚酯玻纤布必须使用辊压或刷子刷,以保证它与路面的充分接触并除去汽泡。热沥青的涂覆宽度必须在聚酯玻纤布的宽度上再加4英寸。聚酯玻纤布在曲线面上不易弯曲或伸展,在曲面上安装施工时可以将布截短,可以机械或手工进行安装。
聚酯玻纤布安装时可以使用拖拉机或卡车拖动的带有金属辊的机构进行,该金属辊的作用是保证将聚酯玻纤布平整地铺展在路面上。在安装辊后面必须安装有一排刷子,保证将聚酯玻纤压紧在沥青涂层中。聚酯玻纤布的接头中必须保证在长度方向有5.1厘米的迭合层,福建聚酯玻纤布价格在宽度方向上有10.2厘米的迭合层。上面的横向接头必须沿着铺装的方向,所有的接头都必须搭接在一起。
铺路机械或其它车辆在聚酯玻纤布安装中在其上面转向一定要逐渐展开,并且一定要保证尽可能地少转向,以避免可能对布的损害。在铺展施工中,设备轮胎必须附着于布面,布面上尽可能少撒沙子以免被粘附。不要为了减少粘附轮胎而减少沥青的铺覆量。好的做法是在迭合部位进行撒布。 铺设完成的道路在合同方或安装工程师确定后可以开放交通。 采用快速冻融法研究了再生细骨料粒径、掺量以及粉煤灰对混凝土抗冻性能的影响.结果表明:再生细骨料混凝土的抗冻性能明显劣于相同配合比的基准混凝土;随着再生细骨料粒径尺寸减小、掺量增加,混凝土的抗冻性能下降,当再生细骨料粒径尺寸≤0.16mm,掺量≥40(质量分数)时,混凝土抗冻性能下降很大;尽管再生细骨料混凝土的抗冻性能随着粉煤灰掺量的增加而有所下降,但掺粉煤灰后再生细骨料混凝土的抗冻性能仍明显优于未掺粉煤灰的再生细骨料混凝土,粉煤灰对再生细骨料混凝土的抗冻性能具有明显的改善作用.
玻璃钢复合材料主要成分为玻璃纤维和树脂,其制品在受热状态下会发生复杂的物理化学变化,相应的物性参数也随之会有较大变化,进而影响材料结构内部的温度分布;对其受热状态下的变化过程进行研究,给出相应的物性参数变化模型;制备玻璃钢试样进行风洞条件下的烧蚀试验,测量试样背面温升,与应用物性参数变化模型进行的仿真计算结果较为吻合,表明模型构建符合工程实际。针对风力机叶片结问题,提出了一种基于气热法原理设计的叶片除系统。先对气热除系统进行设计,并借助地面试验来分析气热加热系统的可行性,然后通过对已装机运行的风电机组进行现场改造的方式来对气热除系统的可靠性进行分析。试验结果表明所设计的气热除系统方案可行,对环境温度为-10~0℃范围的叶片除效果显著,试验运行稳固可靠无异常。将磨制好的水泥筛分成S(0~30μm),M(30~60μm)和L(60~160μm)这3个粒级,测试了每个粒级水泥的颗粒粒径分布和主要矿物相含量,并对其早期水化放热速率、水化产物组成及形貌进行了对比分析.结果表明:3个粒级水泥的主要矿物相含量各异,其中C3S含量大小依次为LMS,C2S,C3A和CaSO4·2H2O含量大小均依次为SML;3个粒级水泥浆体的水化放热速率大小依次为SLM;在水化早期,S大多水化成针棒状AFt,而M,L大多水化成凝胶状AFm和薄片状AH13.
一、施工准备 1.材料 聚酯玻纤布要求必须提交出厂检验报告,经质量认可后方可进场,施工单位要妥善保管,以防受潮、污染或破损。 粘结材料要根据不同部位拼接缝或裂缝,选用不同种类和喷洒量的粘结材料,各种粘结材料要满足相应的技术指标要求,本工程中分别采用了AH-70号()道路石油沥青和SBS改性沥青作为粘结料。 基层裂缝基本上以非荷载型的裂缝即基层干缩、温缩裂缝形式出现。干缩裂缝主要是基层施工时含水量未控制好,偏大,造成后期强度发展时失水收缩而产生裂缝。温缩裂缝主要是由于外界温度的原因受热胀冷缩的作用而开裂。按开裂的表现形式主要分为纵向裂缝和横向裂缝。
纵观已建的高速公路路面基层结构,基本上是采用半刚性基层,如二灰稳定碎石和水泥稳定碎石,等等,其在建成后,会因为各种原因产生各种形式的裂缝。在裂缝形成的初期,其对沥青路面的使用性能常无明显影响,但随着裂缝处的应力集中,往往在路表形成反射裂缝,表面雨水或雪水侵入基层裂缝后,导致裂缝两侧的基层含水量加大,造成结构强度明显降低,在大量行车荷载反复作用下,产生冲刷和唧浆现象,进而形成网裂、沉陷、坑槽等结构性破坏。
目前使用高分子聚合物自粘式聚酯玻纤布及效果分析 通过多次实践及有关资料的介绍,为切实提高路面基层裂缝的处理效果,节省养护经费。选用高分子玻纤聚合物沥青材料自粘式聚酯玻纤布对铣刨路段基层裂缝进行贴封处理。 本文利用DSC研究了改性咪唑/树脂的固化反应动力学方程,借助DSC和DMA研究了不同改性咪唑含量对固化反应和树脂玻璃化转变温度的影响,同时利用红外分析对其反应机理进行了探究。结果表明,改性咪唑/树脂固化体系的表观活化能Ea为60.21k J/mol,频率因子A为2.459×107s-1;改性咪唑/固化物的Tg随改性咪唑用量先增加后降低,当用量为4时达到值163.3℃;改性咪唑在固化过程中存在解封反应及异酸酯和基的氨酯化反应。考虑荷载裂缝宽度与裂缝深度的相关性,基于AgNO3显色法研究了混凝土裂缝的存在对氯离子扩散范围的影响.通过钻孔取粉测定了混凝土中的氯离子含量,研究了裂缝特征的单一因素对氯离子的扩散特性影响.结果表明:裂缝的存在加速了氯离子在混凝土中的扩散过程;氯离子的扩散系数随着裂缝宽度的增加而增大;裂缝深度的变化对氯离子的扩散深度有一定影响.基于试验结果建立了裂缝宽度(裂缝深度)与氯离子扩散系数之间的指数函数关系式.利用圆形气泡试验研究ETFE薄膜双向受力性能,得到了完整的真实应力-应变曲线和基本力学性能参数.结果表明:当真实应力为17~18MPa时,ETFE薄膜的真实应力-应变曲线出现第1个转折点,与单轴拉伸试验结果相同;当真实应力约为50MPa时,该曲线趋于平缓;当真实应力约为60MPa时,由于局部破损导致ETFE薄膜球冠失效;在双向拉伸下,ETFE薄膜破裂时的真实应变为30~40,远小于单轴拉伸试验结果.基于试验结果提出了1种四折线本构模型,并通过数值模拟验证其适用性.探讨了酰胺类聚羧酸系减水剂的合成工艺,设计采用聚醚胺(PN-220)和聚丙烯酸(PAA)为共聚单体,直接聚合制得减水剂.通过试验,就PAA的相对分子质量、单体比例、聚合温度和时间对砂浆减水率、流动度保持性的影响规律进行了分析.在此基础上设计正交试验,得到合成工艺.就采用工艺所合成的产品,与当前普遍生产使用的以聚乙二醇单甲醚(MPEG)和丙烯酸(MAA)为单体合成的产品进行性能对比,结果表明前者是一种保坍性能优异的聚羧酸系减水剂,适用于坍落度保持性要求很高的混凝土.
“自粘式聚酯玻纤布”是一种橡胶沥青类高分子聚合物防水卷材,由沥青基高分子聚合物改性材料、高强抗拉织物、耐高温、与沥青相容性好的抗拉织物复合而成,其在高温下不流动,低温下不脆裂,厚度一般为1~4mm,宽度为24~100cm。
自粘式聚酯玻纤布主要是利用其柔韧性和延展性,减弱基层裂缝(伸缩缝)处的应力集中,降低面层在裂缝处的劈裂作用,同时消除裂缝处的不平整。具体表现为:
1、力学效应。自粘式聚酯玻纤布高分子聚合物材料作为一个应力收膜,可增大基层内的垂直裂缝沿界面向水平方向发展的可能性,从而延缓反射到路表的时间。
2、侨联作用。基层裂缝形成后,抗裂高强抗拉织物、耐高温、沥青相容性好的抗拉织物双层侨联作用 使开裂断面具有一定的抗弯拉能力,减少裂缝张开变形,降低裂缝的拉应力集中。
3、嵌锁咬合作用。自粘式聚酯玻纤布将提高开裂断面抗剪切传荷能力,降低裂缝的剪应力集中。
4、耐低温、防水作用。抗裂沥青基高分子材料具有在一定低温下保持一定性的性能和良好的防水效果,并且在低温时保持形状不发生变化,防止路表开裂后水的下渗。

通过拉伸试验分析了X80管线钢材及其焊接接头拉伸性能,采用扫描电镜及其能谱分析仪观察了上述材料的断口形貌与化学成分,并对其断裂行为进行了研究.结果表明:材延伸率和断面收缩率大于焊接接头,材为韧性断口,而焊接接头为出现分层现象的韧断+脆断断口;材纤维区面积及韧窝尺寸均大于焊接接头,材放射区形貌为韧窝结构,而焊接接头为解理形貌,材与焊接接头的剪切唇区均为解理形貌;焊接接头中夹杂物以硫化物和氧化物为主,是焊接接头力学性能降低的重要因素.通过单向玻璃纤维/复合材料试件的单轴向压缩实验,结合声发射及应变电测技术,研究含直径分别为5mm和10mm两种圆形分层复合材料损伤演化特性,并探讨了试件的压缩损伤破坏过程。结果表明,在压缩载荷作用下,两类分层直径试件的破坏路径基本一致,层间破坏机理相同。分层缺陷面积的大小对试件的承载能力有较大影响,分层缺陷面积越大,试件的承载能力降低,试件的破坏程度加剧。载荷-纵向应变曲线由线性变化到近似线性变化再到非线性变化的过程与声发射信号分析结果较吻合。不添加矿物掺合料,以5种组分(水泥、砂、碎石、水及减水剂)配制五组分高强混凝土,目前尚无统一成熟的方法.先对Mehta等推荐的五组分高强混凝土配合比进行试验验证,然后以此为基础,将砂率(质量分数)和设计强度系数作为变化因素,利用普通混凝土配合比设计方法进行拟合计算,得出适用于C65,C70,C75,C90五组分高强混凝土配合比的砂率和设计强度系数,并进行了验证.结果表明,可利用普通混凝土配合比设计方法进行C65,C70,C75,C90五组分高强混凝土配合比设计.借助非线性有限元软件ANSYS/LS-DYNA,建立了荷载下钢筋混凝土(RC)梁以及芳纶纤维增强复合材料(AFRP)加固后RC梁的三维有限元模型,对比分析了RC梁AFRP加固前后的破坏形态及跨中位移峰值。数值模拟结果表明,AFRP布不仅可以改变RC梁在荷载下的破坏形态,还可以明显改善梁的变形程度,加固后相较于未加固梁跨中位移峰值约减小50.7。在此基础上,还分析了AFRP加固方式、加固尺寸、加固层数以及FRP材料类型等因素对FRP加固后RC梁抗爆性能的影响。
2.设备
施工设备主要有:热沥青喷洒车(有加热装置、喷头经专业加工、喷洒必须保证雾状且喷洒量可以控制)、聚酯玻纤布铺设设备(采用聚酯玻纤布铺设设备施工,保证铺设后聚酯玻纤布平直、无褶皱);
施工主要有:鼓风机、涂刷等(用以清除浮土、碎碴,将聚酯玻纤布压实粘覆在粘结料上)。
3.底层处理
认真做好新旧半刚性基层拼接施工、旧路面沥青层铣刨清理、新(旧)半刚性基层收缩裂缝、旧路面沥青横向反射裂缝及旧路面半刚性基层纵向裂缝的修补,并保证纵向拼接缝或纵、横裂缝两侧高差≤3mm,在表面平整并清理干净后,施工新、旧半刚性基层上化沥青稀浆封层或化沥青封层。
针对一类民用飞机舱门结构的特点,采用蜂窝夹层结构形式进行设计。选定不同内外蒙皮厚度、不同蜂窝高度、加装加强垫板、填平蜂窝凹槽、局部抬高蜂窝高度等多种结构形式进行分析对比。为便于比较各种结构的优缺点建立了舱门结构的有限元模型,并对各组结构弯曲变形情况进行计算。计算结果表明,内蒙皮厚度和蜂窝高度对舱门刚度起主导作用,存在合适刚度的内蒙皮厚度和蜂窝高度使舱门在巡航状态下的弯曲变形符合要求。分析结果及所得结论为同类型飞机舱门的设计提供了借鉴,有一定的参考价值。通过对复合材料的缝合技术和缝合特点的概述,发现目前双面缝合以及单面缝合技术存在的问题和不足,然后结合现有的OSS单面缝合和传统的双面锁式缝合技术的优点,提出了单面双线缝合技术,并基于该技术的缝合动作利用建模软件Solid Works对缝合装置进行了详细的设计,该技术对纤维复合材料铺层的缝合能够形成平滑稳定的类似改良式锁式线迹。后通过Adams进行运动仿真,验证了各机构能够按规律配合完成缝合动作,证明了缝合装置设计的可行性。在直接预浸法制备自动铺丝预浸纱过程中,展纱宽度是影响预浸纱质量的一个关键因素。借助高速数字图像传感器,研究了展纱机构中,纤维束在错位排列的展纱辊/展纱杆上的展开规律和机理。研究结果表明,展纱杆对纤维束的展开作用明显优于展纱辊,纤维张力的增大、纤维束在展纱杆上包角的增大均有利于纤维束的展开;当纤维牵引速率较低时,纤维束的展开宽度随速率的增大而增大;纤维张力利于纤维束的展开,但是过大的张力会使纤维束展开不稳定,宽度波动较大,且易出现劈裂和纤维损伤的缺陷。该研究结果为自动铺丝预浸纱制备工艺提供了指导。
二、施工工艺及方法 聚酯玻纤布施工工序为:底基层表面清扫-测量划线-喷洒粘结料-铺设聚酯玻纤布-保养维护-铺筑新路面。 1.底层表面清扫 (1)在喷洒粘结料前,应将底层表面清扫干净。 (2)保持工作面无水分,雨后必需待路面干燥后方可施工。 (3)喷洒粘结料前,应使新旧半刚性基层表面保持长度不小于200米的施工段。 2.测量、划线
(1)在验收合格的底面上,江苏聚酯玻纤布公司对照拼接缝或裂缝标识确定拼接缝或裂缝位置。
(2)按拟铺宽度定好基准线,并用石灰或粉笔划线作为铺设聚酯玻纤布的依据。对于横向裂缝,保证裂缝两侧的布宽度≥0.75m;对于纵向拼接缝或纵向裂缝,保证布宽为1.8-2.0m,拼接缝或裂缝居中。
3.喷洒粘结料 (1)在铺设设备就位后,将支架上的聚酯玻纤布摆正,使聚酯玻纤布卷轴垂直于拼接缝或裂缝。 (2)在底面划线范围内,用沥青车洒布热粘结料,喷洒粘结料的横向范围要比聚酯玻纤布宽5-250px。 (3)洒布热粘结料时,施工湿度应在5℃以上,热粘结料佳温度应保持165-180℃。 (4)洒布热粘结料时要喷洒均匀,计量准确,用量为0.8-1.0kg/m2。4.聚酯玻纤布的铺设与搭接 (1)待热粘结料完全渗透底面后且在粘结料仍呈液体状时,立即采用聚酯玻纤布铺设设备进行聚酯玻纤布铺设施工,不得使沥青喷洒车与聚酯玻纤布铺设设备距离过远。
(2)使用牵引车或安装在卡车上的框架来铺设聚酯玻纤布时应保持车速均匀,不得忽快忽慢,并及时人工进行调整,以达到铺设平滑的目的。
(3)铺设设备配置涂刷和铁碾子,以保证铺设聚酯玻纤布时,能及时将其压实在粘结料上;若铺设时发生褶皱或打折现象,应当及时用工具切开褶皱部位,然后在铺设方向上再搭接起来,用粘结料胶结并压实,以保证聚酯玻纤布与粘结材料的良好粘结。
(4)聚酯玻纤布铺设施工时,应尽可能铺设成一条直线;当需要转变时,将聚酯玻纤布弯曲处剪开,重叠铺设并喷涂粘结料胶结,应尽量避免聚酯玻纤布打折起皱。在弯道安装时若有不便,应尽量减少聚酯玻纤布铺设长度。
(5)聚酯玻纤布纵向接缝搭接宽度为5-250px,江苏聚酯玻纤布厂家横向缝搭接宽度为10-375px,横向缝搭接方向应当为摊铺沥青砼的方向,将后一端压在前一端之下,并用热粘粘结料粘结好,接缝应牢固。搭接宽度不宜过宽,以避免搭接处夹层变厚,而使底面与上面结构层结合力减弱,导致上面结构层起鼓、脱离、位移等不良影响,所以对搭接过宽部分应裁剪掉。
(6)铺设后的聚酯玻纤布两侧喷洒外露热粘结料应及时用石屑洒盖,以免将封层粘起。
5.保养维护 (1)聚酯玻纤布铺设施工完成后,在热粘结料未冷却至常温时应禁止行人或车辆进入,以防止由于车轮粘油将聚酯玻纤布带起或破坏。
(2)禁止任何车辆在聚酯玻纤布上行驶时突然刹车或急转弯,以免对聚酯玻纤布造成极大破坏。
6.铺筑新路面
(1)上层沥青混合料的摊铺好在聚酯玻纤布施工后隔天进行。
(2)沥青混合料摊铺时,江苏聚酯玻纤布价格运输车辆不得在聚酯玻纤布上急刹或转弯。
三、注意事项 1.在进行聚酯玻纤布施工时,现场操作人员应戴好防护手套,并佩戴防护眼罩,以免被高温热沥青烫伤或被聚酯玻纤布伤手指。 2.施工中不得使用在储存过程中受潮、污染或破损的聚酯玻纤布。
龙岩纺粘超纤无纺布——【厂家开工大吉】
时间 : 2020-03-03
以电化学交流阻抗谱和再碱化模拟试验研究了再碱化对碳化混凝土中具有氧化层钢筋的作用;采用扫描电镜(SEM)结合能谱分析(EDS)对再碱化后具有氧化层钢筋的表面进行了分析.结果表明:再碱化过程中,钢筋电极表面的电化学反应与钢筋表面的状态密切相关;当钢筋电极表面存在氧化物时,再碱化使该氧化物的价态逐渐降低,并在钢筋电极表面形成单质铁,导致钢筋表面不易形成致密钝化膜.以双K断裂理论为基础,基于标准钢筋混凝土三点弯曲梁断裂特性,推导了非标准钢筋混凝土三点弯曲梁断裂参数计算公式.开展了非标准钢筋混凝土三点弯曲梁试件断裂试验,研究了其断裂参数的变化规律.结果表明:试件荷载值随试件高度的增加而增大;而试件的亚临界扩展相对值、断裂韧度、起裂断裂韧度和失稳断裂韧度均不随试件高度的增加而变化,可认为是常数.通过18组试件的试验,对钢-聚醇(PVA)混杂纤维混凝土的流动性、抗压强度、破坏形式及钢纤维与PVA纤维的协同作用进行了研究.结果表明,混杂纤维总掺量(体积分数,下同)为1.75时,混凝土的流动性会随着PVA纤维掺量的提高而降低,且在PVA纤维掺量大于0.25时下降加快;1.50钢纤维和0.25PVA纤维的纤维组合会发生正协同作用,使混凝土抗压强度达到;纤维组合为1.25钢纤维和0.50PVA纤维时混凝土抗折强度;PVA纤维的掺入有利于混凝土受压破坏的多缝开展.
自粘结沥青撒布后必须在沥青未失去流动性动性以前铺撞聚酯玻纤布,否则布体难以浸透沥青,降低聚酯玻纤布的防水性能。
铺装聚酯玻纤布的施工的环境温度必须在4℃以上。
为了取得的效果,在铺装聚酯玻纤布时还要注意以下几个方面:
聚酯玻纤布必须在热沥青上进行安装施工,们推荐以下的沥青:AC-20;PG64-22;
AR8000;或者入等级为60-80的沥青;福建聚酯玻纤布公司对极端高温的夏季施工,推荐采用粘度比较高的沥青,以下沥青比较适合夏季施工:AC-30;PG67-22;AR8000+;或者如等级为40-60的沥青。
沥青使用比例为1.1升/平方米,但是依据安装路面的实际情况和预计的迭合量,该使用比例会有一个范围:1.0-1.3升/平方米,们不推荐将运输车中的沥青加热到204℃以上,因为这样操作会妨碍液体沥青的预成熟。
在装卸聚酯玻纤布时一定要小心谨慎,如果布卷从运输车辆上掉落下来,会损伤聚酯玻纤布,从而造成应用问题。
如果安装中出现了条纹,任何在铺装方向上出现的大于2.5厘米的条纹都必须被割开关迭合起来,并且手工将迭合处浸渍在沥青层中。聚酯玻纤布必须使用辊压或刷子刷,以保证它与路面的充分接触并除去汽泡。热沥青的涂覆宽度必须在聚酯玻纤布的宽度上再加4英寸。聚酯玻纤布在曲线面上不易弯曲或伸展,在曲面上安装施工时可以将布截短,可以机械或手工进行安装。
聚酯玻纤布安装时可以使用拖拉机或卡车拖动的带有金属辊的机构进行,该金属辊的作用是保证将聚酯玻纤布平整地铺展在路面上。在安装辊后面必须安装有一排刷子,保证将聚酯玻纤压紧在沥青涂层中。聚酯玻纤布的接头中必须保证在长度方向有5.1厘米的迭合层,福建聚酯玻纤布价格在宽度方向上有10.2厘米的迭合层。上面的横向接头必须沿着铺装的方向,所有的接头都必须搭接在一起。
铺路机械或其它车辆在聚酯玻纤布安装中在其上面转向一定要逐渐展开,并且一定要保证尽可能地少转向,以避免可能对布的损害。在铺展施工中,设备轮胎必须附着于布面,布面上尽可能少撒沙子以免被粘附。不要为了减少粘附轮胎而减少沥青的铺覆量。好的做法是在迭合部位进行撒布。
铺设完成的道路在合同方或安装工程师确定后可以开放交通。
采用快速冻融法研究了再生细骨料粒径、掺量以及粉煤灰对混凝土抗冻性能的影响.结果表明:再生细骨料混凝土的抗冻性能明显劣于相同配合比的基准混凝土;随着再生细骨料粒径尺寸减小、掺量增加,混凝土的抗冻性能下降,当再生细骨料粒径尺寸≤0.16mm,掺量≥40(质量分数)时,混凝土抗冻性能下降很大;尽管再生细骨料混凝土的抗冻性能随着粉煤灰掺量的增加而有所下降,但掺粉煤灰后再生细骨料混凝土的抗冻性能仍明显优于未掺粉煤灰的再生细骨料混凝土,粉煤灰对再生细骨料混凝土的抗冻性能具有明显的改善作用.玻璃钢复合材料主要成分为玻璃纤维和树脂,其制品在受热状态下会发生复杂的物理化学变化,相应的物性参数也随之会有较大变化,进而影响材料结构内部的温度分布;对其受热状态下的变化过程进行研究,给出相应的物性参数变化模型;制备玻璃钢试样进行风洞条件下的烧蚀试验,测量试样背面温升,与应用物性参数变化模型进行的仿真计算结果较为吻合,表明模型构建符合工程实际。针对风力机叶片结问题,提出了一种基于气热法原理设计的叶片除系统。先对气热除系统进行设计,并借助地面试验来分析气热加热系统的可行性,然后通过对已装机运行的风电机组进行现场改造的方式来对气热除系统的可靠性进行分析。试验结果表明所设计的气热除系统方案可行,对环境温度为-10~0℃范围的叶片除效果显著,试验运行稳固可靠无异常。将磨制好的水泥筛分成S(0~30μm),M(30~60μm)和L(60~160μm)这3个粒级,测试了每个粒级水泥的颗粒粒径分布和主要矿物相含量,并对其早期水化放热速率、水化产物组成及形貌进行了对比分析.结果表明:3个粒级水泥的主要矿物相含量各异,其中C3S含量大小依次为LMS,C2S,C3A和CaSO4·2H2O含量大小均依次为SML;3个粒级水泥浆体的水化放热速率大小依次为SLM;在水化早期,S大多水化成针棒状AFt,而M,L大多水化成凝胶状AFm和薄片状AH13.
一、施工准备
1.材料
聚酯玻纤布要求必须提交出厂检验报告,经质量认可后方可进场,施工单位要妥善保管,以防受潮、污染或破损。
粘结材料要根据不同部位拼接缝或裂缝,选用不同种类和喷洒量的粘结材料,各种粘结材料要满足相应的技术指标要求,本工程中分别采用了AH-70号()道路石油沥青和SBS改性沥青作为粘结料。
基层裂缝基本上以非荷载型的裂缝即基层干缩、温缩裂缝形式出现。干缩裂缝主要是基层施工时含水量未控制好,偏大,造成后期强度发展时失水收缩而产生裂缝。温缩裂缝主要是由于外界温度的原因受热胀冷缩的作用而开裂。按开裂的表现形式主要分为纵向裂缝和横向裂缝。
纵观已建的高速公路路面基层结构,基本上是采用半刚性基层,如二灰稳定碎石和水泥稳定碎石,等等,其在建成后,会因为各种原因产生各种形式的裂缝。在裂缝形成的初期,其对沥青路面的使用性能常无明显影响,但随着裂缝处的应力集中,往往在路表形成反射裂缝,表面雨水或雪水侵入基层裂缝后,导致裂缝两侧的基层含水量加大,造成结构强度明显降低,在大量行车荷载反复作用下,产生冲刷和唧浆现象,进而形成网裂、沉陷、坑槽等结构性破坏。
目前使用高分子聚合物自粘式聚酯玻纤布及效果分析
通过多次实践及有关资料的介绍,为切实提高路面基层裂缝的处理效果,节省养护经费。选用高分子玻纤聚合物沥青材料自粘式聚酯玻纤布对铣刨路段基层裂缝进行贴封处理。
本文利用DSC研究了改性咪唑/树脂的固化反应动力学方程,借助DSC和DMA研究了不同改性咪唑含量对固化反应和树脂玻璃化转变温度的影响,同时利用红外分析对其反应机理进行了探究。结果表明,改性咪唑/树脂固化体系的表观活化能Ea为60.21k J/mol,频率因子A为2.459×107s-1;改性咪唑/固化物的Tg随改性咪唑用量先增加后降低,当用量为4时达到值163.3℃;改性咪唑在固化过程中存在解封反应及异酸酯和基的氨酯化反应。考虑荷载裂缝宽度与裂缝深度的相关性,基于AgNO3显色法研究了混凝土裂缝的存在对氯离子扩散范围的影响.通过钻孔取粉测定了混凝土中的氯离子含量,研究了裂缝特征的单一因素对氯离子的扩散特性影响.结果表明:裂缝的存在加速了氯离子在混凝土中的扩散过程;氯离子的扩散系数随着裂缝宽度的增加而增大;裂缝深度的变化对氯离子的扩散深度有一定影响.基于试验结果建立了裂缝宽度(裂缝深度)与氯离子扩散系数之间的指数函数关系式.利用圆形气泡试验研究ETFE薄膜双向受力性能,得到了完整的真实应力-应变曲线和基本力学性能参数.结果表明:当真实应力为17~18MPa时,ETFE薄膜的真实应力-应变曲线出现第1个转折点,与单轴拉伸试验结果相同;当真实应力约为50MPa时,该曲线趋于平缓;当真实应力约为60MPa时,由于局部破损导致ETFE薄膜球冠失效;在双向拉伸下,ETFE薄膜破裂时的真实应变为30~40,远小于单轴拉伸试验结果.基于试验结果提出了1种四折线本构模型,并通过数值模拟验证其适用性.探讨了酰胺类聚羧酸系减水剂的合成工艺,设计采用聚醚胺(PN-220)和聚丙烯酸(PAA)为共聚单体,直接聚合制得减水剂.通过试验,就PAA的相对分子质量、单体比例、聚合温度和时间对砂浆减水率、流动度保持性的影响规律进行了分析.在此基础上设计正交试验,得到合成工艺.就采用工艺所合成的产品,与当前普遍生产使用的以聚乙二醇单甲醚(MPEG)和丙烯酸(MAA)为单体合成的产品进行性能对比,结果表明前者是一种保坍性能优异的聚羧酸系减水剂,适用于坍落度保持性要求很高的混凝土.
“自粘式聚酯玻纤布”是一种橡胶沥青类高分子聚合物防水卷材,由沥青基高分子聚合物改性材料、高强抗拉织物、耐高温、与沥青相容性好的抗拉织物复合而成,其在高温下不流动,低温下不脆裂,厚度一般为1~4mm,宽度为24~100cm。
自粘式聚酯玻纤布主要是利用其柔韧性和延展性,减弱基层裂缝(伸缩缝)处的应力集中,降低面层在裂缝处的劈裂作用,同时消除裂缝处的不平整。具体表现为:
1、力学效应。自粘式聚酯玻纤布高分子聚合物材料作为一个应力收膜,可增大基层内的垂直裂缝沿界面向水平方向发展的可能性,从而延缓反射到路表的时间。
2、侨联作用。基层裂缝形成后,抗裂高强抗拉织物、耐高温、沥青相容性好的抗拉织物双层侨联作用 使开裂断面具有一定的抗弯拉能力,减少裂缝张开变形,降低裂缝的拉应力集中。
3、嵌锁咬合作用。自粘式聚酯玻纤布将提高开裂断面抗剪切传荷能力,降低裂缝的剪应力集中。
4、耐低温、防水作用。抗裂沥青基高分子材料具有在一定低温下保持一定性的性能和良好的防水效果,并且在低温时保持形状不发生变化,防止路表开裂后水的下渗。
2.设备
施工设备主要有:热沥青喷洒车(有加热装置、喷头经专业加工、喷洒必须保证雾状且喷洒量可以控制)、聚酯玻纤布铺设设备(采用聚酯玻纤布铺设设备施工,保证铺设后聚酯玻纤布平直、无褶皱);
施工主要有:鼓风机、涂刷等(用以清除浮土、碎碴,将聚酯玻纤布压实粘覆在粘结料上)。
3.底层处理
认真做好新旧半刚性基层拼接施工、旧路面沥青层铣刨清理、新(旧)半刚性基层收缩裂缝、旧路面沥青横向反射裂缝及旧路面半刚性基层纵向裂缝的修补,并保证纵向拼接缝或纵、横裂缝两侧高差≤3mm,在表面平整并清理干净后,施工新、旧半刚性基层上化沥青稀浆封层或化沥青封层。
针对一类民用飞机舱门结构的特点,采用蜂窝夹层结构形式进行设计。选定不同内外蒙皮厚度、不同蜂窝高度、加装加强垫板、填平蜂窝凹槽、局部抬高蜂窝高度等多种结构形式进行分析对比。为便于比较各种结构的优缺点建立了舱门结构的有限元模型,并对各组结构弯曲变形情况进行计算。计算结果表明,内蒙皮厚度和蜂窝高度对舱门刚度起主导作用,存在合适刚度的内蒙皮厚度和蜂窝高度使舱门在巡航状态下的弯曲变形符合要求。分析结果及所得结论为同类型飞机舱门的设计提供了借鉴,有一定的参考价值。通过对复合材料的缝合技术和缝合特点的概述,发现目前双面缝合以及单面缝合技术存在的问题和不足,然后结合现有的OSS单面缝合和传统的双面锁式缝合技术的优点,提出了单面双线缝合技术,并基于该技术的缝合动作利用建模软件Solid Works对缝合装置进行了详细的设计,该技术对纤维复合材料铺层的缝合能够形成平滑稳定的类似改良式锁式线迹。后通过Adams进行运动仿真,验证了各机构能够按规律配合完成缝合动作,证明了缝合装置设计的可行性。在直接预浸法制备自动铺丝预浸纱过程中,展纱宽度是影响预浸纱质量的一个关键因素。借助高速数字图像传感器,研究了展纱机构中,纤维束在错位排列的展纱辊/展纱杆上的展开规律和机理。研究结果表明,展纱杆对纤维束的展开作用明显优于展纱辊,纤维张力的增大、纤维束在展纱杆上包角的增大均有利于纤维束的展开;当纤维牵引速率较低时,纤维束的展开宽度随速率的增大而增大;纤维张力利于纤维束的展开,但是过大的张力会使纤维束展开不稳定,宽度波动较大,且易出现劈裂和纤维损伤的缺陷。该研究结果为自动铺丝预浸纱制备工艺提供了指导。
二、施工工艺及方法
聚酯玻纤布施工工序为:底基层表面清扫-测量划线-喷洒粘结料-铺设聚酯玻纤布-保养维护-铺筑新路面。
1.底层表面清扫
(1)在喷洒粘结料前,应将底层表面清扫干净。
(2)保持工作面无水分,雨后必需待路面干燥后方可施工。
(3)喷洒粘结料前,应使新旧半刚性基层表面保持长度不小于200米的施工段。
2.测量、划线
(1)在验收合格的底面上,江苏聚酯玻纤布公司对照拼接缝或裂缝标识确定拼接缝或裂缝位置。
(2)按拟铺宽度定好基准线,并用石灰或粉笔划线作为铺设聚酯玻纤布的依据。对于横向裂缝,保证裂缝两侧的布宽度≥0.75m;对于纵向拼接缝或纵向裂缝,保证布宽为1.8-2.0m,拼接缝或裂缝居中。
3.喷洒粘结料
(1)在铺设设备就位后,将支架上的聚酯玻纤布摆正,使聚酯玻纤布卷轴垂直于拼接缝或裂缝。
(2)在底面划线范围内,用沥青车洒布热粘结料,喷洒粘结料的横向范围要比聚酯玻纤布宽5-250px。
(3)洒布热粘结料时,施工湿度应在5℃以上,热粘结料佳温度应保持165-180℃。
(4)洒布热粘结料时要喷洒均匀,计量准确,用量为0.8-1.0kg/m2。4.聚酯玻纤布的铺设与搭接
(1)待热粘结料完全渗透底面后且在粘结料仍呈液体状时,立即采用聚酯玻纤布铺设设备进行聚酯玻纤布铺设施工,不得使沥青喷洒车与聚酯玻纤布铺设设备距离过远。
(2)使用牵引车或安装在卡车上的框架来铺设聚酯玻纤布时应保持车速均匀,不得忽快忽慢,并及时人工进行调整,以达到铺设平滑的目的。
(3)铺设设备配置涂刷和铁碾子,以保证铺设聚酯玻纤布时,能及时将其压实在粘结料上;若铺设时发生褶皱或打折现象,应当及时用工具切开褶皱部位,然后在铺设方向上再搭接起来,用粘结料胶结并压实,以保证聚酯玻纤布与粘结材料的良好粘结。
(4)聚酯玻纤布铺设施工时,应尽可能铺设成一条直线;当需要转变时,将聚酯玻纤布弯曲处剪开,重叠铺设并喷涂粘结料胶结,应尽量避免聚酯玻纤布打折起皱。在弯道安装时若有不便,应尽量减少聚酯玻纤布铺设长度。
(5)聚酯玻纤布纵向接缝搭接宽度为5-250px,江苏聚酯玻纤布厂家横向缝搭接宽度为10-375px,横向缝搭接方向应当为摊铺沥青砼的方向,将后一端压在前一端之下,并用热粘粘结料粘结好,接缝应牢固。搭接宽度不宜过宽,以避免搭接处夹层变厚,而使底面与上面结构层结合力减弱,导致上面结构层起鼓、脱离、位移等不良影响,所以对搭接过宽部分应裁剪掉。
(6)铺设后的聚酯玻纤布两侧喷洒外露热粘结料应及时用石屑洒盖,以免将封层粘起。
5.保养维护
(1)聚酯玻纤布铺设施工完成后,在热粘结料未冷却至常温时应禁止行人或车辆进入,以防止由于车轮粘油将聚酯玻纤布带起或破坏。
(2)禁止任何车辆在聚酯玻纤布上行驶时突然刹车或急转弯,以免对聚酯玻纤布造成极大破坏。
6.铺筑新路面
(1)上层沥青混合料的摊铺好在聚酯玻纤布施工后隔天进行。
(2)沥青混合料摊铺时,江苏聚酯玻纤布价格运输车辆不得在聚酯玻纤布上急刹或转弯。
三、注意事项
1.在进行聚酯玻纤布施工时,现场操作人员应戴好防护手套,并佩戴防护眼罩,以免被高温热沥青烫伤或被聚酯玻纤布伤手指。
2.施工中不得使用在储存过程中受潮、污染或破损的聚酯玻纤布。